Docking on the DNA G-quadruplex: a molecular electrostatic potential study.

نویسندگان

  • Juan Antonio Mondragón-Sánchez
  • Ruben Santamaria
  • Ramón Garduño-Juárez
چکیده

The G-quadruplexes are four-stranded nucleic acid structures with guanine-rich sequences that play important biological roles in, for example, regulating telomerase association and activity. Recent evidence supports the hypothesis that the telomeric G-quadruplex DNA represents a target of novel anticancer drug medication. In this work, we present results of the molecular electrostatic potential (MEP), together with the HOMO and LUMO frontier orbitals, which are physical quantities of concern in the docking of compounds on the G-quadruplex. The calculations are performed in the frame of density functional theory at the B88LYP/6-31G* level of theory. Additional functionals that introduce dispersion effects were also taken into consideration. The MEP potential and electron density of the frontier molecular orbitals of the G-quadruplex exhibit topological deformations due to the coiled conformation of the compound when they are compared with the MEP and corresponding electron density of a DNA duplex with similar nucleic acid composition. The electrostatic active zone of the G-quadruplex is localized on the top part of the quadruplex structure where the MEP acquires the most negative values. Additional computations on a set of three daunomycins, a common anticancer drug for duplex DNA, indicate an electrostatic fastening between the quadruplex and the set of daunomycins. In this regard, the G-quadruplex electrostatic interactions favor the stacking of ligands. Finally, some implications on molecular drug design are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular docking and in silico ADME prediction of Ticagrelor as an antagonist of the P2Y12 receptor

The purpose of the present research work is prediction of electronic and physico-chemical properties of the novel medicinal compound Ticagrelor (AZD6140) using density functional theory (DFT) method. Firstly, its molecular structure was optimized at B3LYP/6-311++G(d,p) basis set of theory at room temperature. The global reactivity indices used to study the reactivity and stability of the title ...

متن کامل

A Water‐Soluble Tetraazaperopyrene Dye as Strong G‐Quadruplex DNA Binder

The interactions of the water-soluble tetraazaperopyrene dye 1 with ct-DNA, duplex-[(dAdT)12 ⋅(dAdT)12 ], duplex-[(dGdC)12 ⋅(dGdC)12 ] as well as with two G-quadruplex-forming sequences, namely the human telomeric 22AG and the promotor sequence c-myc, were investigated by means of UV/visible and fluorescence spectroscopy, isothermal titration calorimetry (ITC) and molecular docking studies. Dye...

متن کامل

Molecular docking based screening of triterpenoids as potential G-quadruplex stabilizing ligands with anti-cancer activity

Triterpenoids isolated from Ganoderma lucidum (GLTs) exhibit a broad spectrum of anti-cancer properties, including anti-proliferative, anti-metastatic and anti-angiogenic activities. Current research studies revealed the role by GLTs in inducing apoptosis and suppression of telomerase activity of cancer cells with much lower toxicity to healthy cells. Compounds selectively binding and stabilizi...

متن کامل

A computational study of lipophilicity of E-2-arylmethylen-1-tetralones and their heteroanalogues using QSAR and DFT Based Molecular surface Electrostatic Potential

E-2-Arylmethylen-1- tetralones and E-3-phenylme thylene chromanone-4-ones and their derivatives closely related to flavonoids belong to the plant secondary metabolites most investigated recently.The class of flavonoids is an enormous class of plant secondary metabolites having so different pharmacological effects as inhibition of nitric oxide synthasecancer preventive effect or potential impact...

متن کامل

Structure-based virtual screening of novel natural alkaloid derivatives as potential binders of h-telo and c-myc DNA G-quadruplex conformations.

Several ligands can bind to the non-canonical G-quadruplex DNA structures thereby stabilizing them. These molecules can act as effective anticancer agents by stabilizing the telomeric regions of DNA or by regulating oncogene expression. In order to better interact with the quartets of G-quadruplex structures, G-binders are generally characterized by a large aromatic core involved in π-π stackin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biopolymers

دوره 95 9  شماره 

صفحات  -

تاریخ انتشار 2011